Cách giải phương trình lượng giác

     

Cách giải phương trình lượng giác cơ bản

Với biện pháp giải phương trình lượng giác cơ bản Toán lớp 11 có đầy đủ phương thức giải, lấy ví dụ như minh họa và bài tập trắc nghiệm gồm lời giải chi tiết sẽ giúp học sinh ôn tập, biết phương pháp làm dạng bài xích tập phương trình lượng giác từ đó đạt điểm cao trong bài xích thi môn Toán lớp 11.

Bạn đang xem: Cách giải phương trình lượng giác

*

A. Phương thức giải và Ví dụ

- Phương trình sinx = a (1)

♦ |a| > 1: phương trình (1) vô nghiệm.

♦ |a| ≤ 1: gọi α là 1 trong những cung thỏa mãn sinα = a.

khi ấy phương trình (1) có những nghiệm là

x = α + k2π, k ∈ Z

và x = π-α + k2π, k ∈ Z.

Nếu α thỏa mãn nhu cầu điều khiếu nại với sinα = a thì ta viết α = arcsin a.

Khi đó những nghiệm của phương trình (1) là

x = arcsina + k2π, k ∈ Z

cùng x = π - arcsina + k2π, k ∈ Z.

Các ngôi trường hợp quánh biệt:

*

- Phương trình cosx = a (2)

♦ |a| > 1: phương trình (2) vô nghiệm.

♦ |a| ≤ 1: hotline α là 1 trong cung vừa lòng cosα = a.

Khi đó phương trình (2) có các nghiệm là

x = α + k2π, k ∈ Z

và x = -α + k2π, k ∈ Z.

Xem thêm: Bác Sĩ Thú Nhồi Bông Tap 1 Cực Sốc, Oxford Picture Dictionary English

Nếu α vừa lòng điều kiện cùng cosα = a thì ta viết α = arccos a.

Khi đó các nghiệm của phương trình (2) là

x = arccosa + k2π, k ∈ Z

với x = -arccosa + k2π, k ∈ Z.

Các trường hợp quánh biệt:

*

- Phương trình tanx = a (3)

Điều kiện:

*
Nếu α thỏa mãn nhu cầu điều khiếu nại cùng tanα = a thì ta viết α = arctan a.

Khi đó những nghiệm của phương trình (3) là

x = arctana + kπ,k ∈ Z

- Phương trình cotx = a (4)

Điều kiện: x ≠ kπ, k ∈ Z.

Nếu α thỏa mãn điều kiện và cotα = a thì ta viết α = arccot a.

Khi đó những nghiệm của phương trình (4) là

x = arccota + kπ, k ∈ Z

*

Ví dụ minh họa

Bài 1: Giải các phương trình lượng giác sau:

a) sinx = sin(π/6) c) tanx – 1 = 0

b) 2cosx = 1. d) cotx = tan2x.

Xem thêm: Tổng Hợp Lý Thuyết Chương 2: Sóng Cơ Và Sóng Âm Lý 12, Sóng Cơ Và Sóng Âm

Bài 2: Giải các phương trình lượng giác sau:

a) cos2 x - sin2x =0.

b) 2sin(2x – 40º) = √3

Bài 3: Giải các phương trình lượng giác sau:

*

Đáp án và lý giải giải

Bài 1: Giải các phương trình lượng giác sau:

a) sin⁡x = sin⁡π/6

*

b)

*

c) tan⁡x=1⇔cos⁡x= π/4+kπ (k ∈ Z)

d) cot⁡x=tan⁡2x

*

Bài 2: Giải những phương trình lượng giác sau:

a) cos2x-sin2x=0 ⇔cos2x-2 sin⁡x cos⁡x=0

⇔ cos⁡x (cos⁡x - 2 sin⁡x )=0

*

b) 2 sin⁡(2x-40º )=√3

⇔ sin⁡(2x-40º )=√3/2

*

Bài 3: Giải các phương trình lượng giác sau:

a) sin⁡(2x+1)=cos⁡(3x+2)

*

b)

*

⇔ sin⁡x+1=1+4k

⇔ sin⁡x=4k (k ∈ Z)

Nếu |4k| > 1⇔|k| > 1/4; phương trình vô nghiệm

Nếu |4k| ≤ 1 nhưng mà k nguyên ⇒ k = 0 .Khi đó:

⇔sin⁡x = 0 ⇔ x = mπ (m ∈ Z)

*

B. Bài tập vận dụng

Bài 1: Giải các phương trình sau

a) cos(3x + π) = 0

b) cos (π/2 - x) = sin2x

Lời giải:

*

*

Bài 2: Giải các phương trình sau

a) sinx.cosx = 1

b) cos2 x - sin2 x + 1 = 0

Lời giải:

*

*

Bài 3: Giải những phương trình sau

a) cos2 x - 3cosx + 2 = 0

b) 1/(cos2 x) - 2 = 0.

Lời giải:

*

*

Bài 4: Giải các phương trình sau: (√3-1)sinx = 2sin2x.

Lời giải:

*

Bài 5: Giải các phương trình sau: (√3-1)sinx + (√3+1)cosx = 2√2 sin2x